skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jia, Siyao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We measure the 3D kinematic structures of the young stars within the central 0.5 pc of our Galactic Center using the 10 m telescopes of the W. M. Keck Observatory over a time span of 25 yr. Using high-precision measurements of positions on the sky and proper motions and radial velocities from new observations and the literature, we constrain the orbital parameters for each young star. Our results show two statistically significant substructures: a clockwise stellar disk with 18 candidate stars, as has been proposed before, but with an improved disk membership; and a second, almost edge-on plane of 10 candidate stars oriented east–west on the sky that includes at least one IRS 13 star. We estimate the eccentricity distribution of each substructure and find that the clockwise disk has 〈e〉 = 0.39 and the edge-on plane has 〈e〉 = 0.68. We also perform simulations of each disk/plane with incompleteness and spatially variable extinction to search for asymmetry. Our results show that the clockwise stellar disk is consistent with a uniform azimuthal distribution within the disk. The edge-on plane has an asymmetry that cannot be explained by variable extinction or incompleteness in the field. The orientation, asymmetric stellar distribution, and high eccentricity of the edge-on plane members suggest that this structure may be a stream associated with the IRS 13 group. The complex dynamical structure of the young nuclear cluster indicates that the star formation process involved complex gas structures and dynamics and is inconsistent with a single massive gaseous disk. 
    more » « less
  2. null (Ed.)
  3. The general theory of relativity predicts that a star passing close to a supermassive black hole should exhibit a relativistic redshift. In this study, we used observations of the Galactic Center star S0-2 to test this prediction. We combined existing spectroscopic and astrometric measurements from 1995–2017, which cover S0-2’s 16-year orbit, with measurements from March to September 2018, which cover three events during S0-2’s closest approach to the black hole. We detected a combination of special relativistic and gravitational redshift, quantified using the redshift parameter ϒ. Our result, ϒ = 0.88 ± 0.17, is consistent with general relativity (ϒ = 1) and excludes a Newtonian model (ϒ = 0) with a statistical significance of 5σ. 
    more » « less